Laparoscopic Abdominal Access and Prevention of Injury

Ronald Kolata, DVM
Ethicon Endo-Surgery, Inc.
Cincinnati, Ohio

INTRODUCTION

This paper reviews the use of trocars and trocar-related injuries with abdominal surgery, covering the following areas:

• **SECTION I** reviews the types of trocars in use and the wounds most commonly associated with each type;
• Section II covers the most common sites and types of injury related to trocar use;
• Section III addresses the factors associated with increased risk of injury from penetration force, obesity, and adhesions; and
• Section IV examines ways physicians can prevent and manage injuries.

Approximately 1 in every 1000 patients undergoing laparoscopic abdominal surgery will experience bowel or vessel perforation injury by trocars during initial access. A systematic review of studies found no conclusive evidence that any one method of gaining initial access and establishing pneumoperitoneum during laparoscopic surgery is safer or more efficacious than another. While injuries occurred with all commonly used methods, trends in the findings warrant further study. Similarly, reports reviewing injury claims submitted to the Food and Drug Administration as well as to insurers found that no single trocar is without the potential for injury. While neither the method nor type of trocar used appears to influence the safety of establishing laparoscopic access, factors reported to contribute significantly to visceral and vascular injuries are usage errors, inexperience, poor skill, violation of good technique, high axial force with excessive downward displacement of the abdominal wall, over-thrust, inadequate incision size, and previous abdominal surgery. Although infrequent, injuries and complications related to abdominal access for laparoscopic surgery concern surgeons, as they adversely affect patients and may lead to litigation. After a review of the trocars available for laparoscopic surgery, common injuries and key issues in injury prevention will be addressed.
half-sphere dome that allows tissue visualization. Its blade is activated by a trigger mechanism and cuts the tissue in view, then automatically retracts.6

Examples of Trocar Types
Trocars can be grouped into several categories (see Figures 1–9).

Wounds Associated with Trocar Types
Studies have shown that trocars of the same diameter create defects similar in length, regardless of the trocar used, but that noncutting trocars create wounds with a smaller width than cutting trocars.12,14 In fact, one study found that 12-mm blunt conical (i.e., noncutting) trocars created wounds of a size similar to those of an 8-mm pyramidal (i.e., cutting) trocar.5

- **Pyramidal-tip trocars** cut tissue fibers in three planes; the tissue tends to retract and leave a gaping wound (Figures 10 and 11).
- **Flat-blade trocars** cut fibers in one plane; therefore, some tissue layers will be cut, while other layers will be separated as the trocar passes through the abdominal wall. These wounds tend to gape less than wounds of pyramidal trocars (Figures 12 and 13).
- **Noncutting trocars** separate tissues along planes of least resistance and do not cut across fibers, minimizing wounds (Figures 14 and 15). Noncutting trocars create what is referred to as a “grid-iron incision” wound in areas of the abdominal wall having multiple layers.14 Layer overlap is most likely at parame- dian sites, where there are multiple layers of muscle and fascia, rather than at midline sites, which pass through the condensed fascia of the umbilical scar. The difference in the direction of tension on different layers of tissue tends to cause the wound to close when the cannula is removed. Similarly, using the “Z”-track insertion technique exaggerates the overlap of muscle layers and reduces hernia formation. Wounds created by the open approach are linear scalpel incisions through the fascia and peritoneum and are of variable size, depending on surgeon technique.15

The following slides provide images of various wounds presented by trocar type.